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Time-critical applications

real-time applications

structural health monitoring
embedded control

many-query applications

design optimization
uncertainty quantification

inputs µ → high-fidelity model → outputs y

barrier: simulation can take days on supercomputers

model reduction

inputs µ → reduced-order model → outputs y

offline (expensive): ‘training’ analyses
online (cheap): deploy low-dimensional model
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Main idea

high-fidelity model

parameterized simple mechanical system
nonlinear potential energy
Rayleigh damping
external force

existing reduced-order models

1 preserve structure, but remain expensive
2 destroy structure, but are cheap

our proposed reduced-order model
preserves structure and is cheap
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Lagrangian description of structural dynamics

equations of motion from finite-element discretization

M (µ)q̈ + C (µ)q̇ +∇qV (q;µ) = f ext (t;µ) .

can be derived via Lagrangian dynamics with five
‘ingredients’:

1 configuration space Q = RN

2 Riemannian metric g(v , w ;µ) = vTM (µ)w

3 potential-energy function V (q;µ)

4 dissipation function F(q̇,µ) = 1
2 q̇TC (µ)q̇

5 external force derived from the Lagrange–D’Alembert principle
f ext (t;µ)

properties 1–3 define a simple mechanical system

properties 4–5 characterize non-conservative forces
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Equations of motion: derived from five ingredients

configuration space: q ∈ Q = RN

kinetic energy: T (q̇;µ) = 1
2 g(q̇, q̇;µ) = 1

2 q̇TM (µ)q̇

Lagrangian:

L(q, q̇;µ) = T (q̇;µ)− V (q;µ)

=
1

2
q̇TM (µ)q̇ − V (q;µ).

non-conservative forces

F (t, q, q̇;µ) = f ext (t;µ)−∇q̇F (q̇;µ)

apply forced Euler–Lagrange equations

d

dt
∇q̇L(q, q̇;µ)−∇qL(q, q̇;µ) = F (t, q, q̇;µ)

M (µ)q̈ + C (µ)q̇ +∇qV (q;µ) = f ext (t;µ)
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Key properties

conservative mechanical systems (F = 0)

energy conservation
momentum conservation
dynamics satisfy variational principle
symplectic time-evolution maps

structure-preserving time integration
[Marsden and West, 2001, Hairer et al., 2006]

discrete system preserves some of the above properties
leads to improved long-time behavior

reduced-order models should preserve these properties

Efficient, structure-preserving model reduction K. Carlberg, R. Tuminaro, P. Boggs 8 / 35



Outline

1 Motivation

2 Problem formulation

3 Existing model-reduction techniques
preserves structure, but expensive
cheap, but destroys structure

4 Proposed method

5 Numerical example

Efficient, structure-preserving model reduction K. Carlberg, R. Tuminaro, P. Boggs 9 / 35



Galerkin: structure-preserving model reduction [Lall et al., 2003]

determine low-dimensional basis Φ ∈ RN×m

modal decomposition, proper orthogonal decomposition

substitute q = Φqr to obtain ‘reduced ingredients’

1 configuration space Qr = Rm with Qr ≡ {Φqr | qr ∈ Qr}
2 Riemannian metric gr (vr , wr ;µ) ≡ g(Φvr , Φwr ;µ)

3 potential-energy function Vr (qr ;µ) ≡ V (Φqr ;µ)

4 dissipation function Fr (q̇r ;µ) ≡ F(Φqr ;µ)

5 external force f ext
r = ΦT f ext

forced Euler–Lagrange equations yield

ΦTM (µ)Φq̈r+ΦTC (µ)Φq̇r+ΦT∇qV (Φqr ;µ) = ΦT f ext (t;µ)

+ preserves Lagrangian structure

- remains expensive for parameterized, nonlinear systems
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Computational bottleneck

ΦTM (µ)Φq̈r + ΦTC (µ)Φq̇r + ΦT∇qV (Φqr ;µ) = ΦT f ext (t;µ)

when µ changes, must recompute ΦTM (µ)Φ and ΦTC (µ)Φ
O(Nm2) operations: scales with large dimension N

�T

�M(µ)
�TM(µ)�

=

when qr changes, must recompute ΦT∇qV (Φqr ;µ)
O(Nm) operations
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Collocation [Astrid et al., 2008, Ryckelynck, 2005]

ΦTM (µ)Φq̈r + ΦTC (µ)Φq̇r + ΦT∇qV (Φqr ;µ) = ΦT f ext (t;µ)

compute subset of equations before performing Galerkin
projection

ΦTZTZ M (µ)Φq̈r + ΦTZTZ C (µ)Φq̇r + ΦTZTZ∇qV (Φqr ;µ)

= ΦTZTZf ext (t;µ) .

‘sampling matrix’ Z : nZ � N rows of identity matrix

destroyed properties:

2. mass matrix not symmetric: does not define a metric
3. stiffness matrix not symmetric: does not derive from a

potential-energy function
4. dissipation matrix not symmetric: does not derive from a

dissipation function
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Empirical interpolation/least-squares approximation
[Grepl et al., 2007, Nguyen and Peraire, 2008, Chaturantabut et al., 2010, Carlberg et al., 2011]

ΦTM (µ)Φq̈r + ΦTC (µ)Φq̇r + ΦT∇qV (Φqr ;µ) = ΦT f ext (t;µ)

interpolate functions before performing Galerkin projection

ΦT f̃1(q̈r ;µ) + ΦT f̃2(q̇r ;µ) + ΦT f̃3(qr ;µ) = ΦT f̃ ext (t;µ)

f̃ = Φf [Z Φf ]+Zf : least-squares approximation of f

destroyed properties:

2. mass matrix not symmetric: does not define a metric
3. stiffness matrix not symmetric: does not derive from a

potential-energy function
4. dissipation matrix not symmetric: does not derive from a

dissipation function
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Existing complexity-reduction methods

reduced
Lagrangian ingredients

apply
Euler–Lagrange

equations

reduced-order
equations of motion

approximated
reduced-order

equations of motion

+ leads to N-independent cost

- destroys Lagrangian structure
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Proposed complexity-reduction method

approximated reduced
Lagrangian ingredients

reduced
Lagrangian ingredients

apply
Euler–Lagrange

equations

reduced-order
equations of motion

apply
Euler–Lagrange

equations

approximated
reduced-order

equations of motion

+ leads to N-independent cost

+ preserves Lagrangian structure
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Efficient, structure-preserving model reduction

directly approximate reduced Lagrangian ingredients

1 configuration space Qr = Rm with Qr ≡ {Φqr | qr ∈ Qr}
2 Riemannian metric g̃r ≈ gr

3 potential-energy function Ṽr ≈ Vr

4 dissipation function F̃r ≈ Fr

5 external force f̃ ext
r ≈ f ext

r
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Approximated reduced Lagrangian ingredients

1 configuration space Qr = Rm with Qr ≡ {Φqr | qr ∈ Qr}
2 Riemannian metric g̃r ≈ gr

3 potential-energy function Ṽr ≈ Vr

4 dissipation function F̃r ≈ Fr

5 external force f̃ ext
r ≈ f ext

r
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External-force approximation f̃ extr

least-squares approximation of external force

f̃ ext = Φf [Z Φf ]+ Zf ext ≈ f ext

apply Lagrange–D’Alembert principle to f̃ ext with variations in
reduced configuration space:

f̃ ext
r = ΦT f̃ ext = ΦTΦf [Z Φf ]+ Zf ext

Offline (expensive)

1 collect snapshots of the external force and compute basis Φf

2 determine sampling matrix Z
3 compute small-scale matrix A = ΦTΦf [Z Φf ]+

Online (cheap)

1 compute a few entries of the external force Zf ext

2 compute small-scale product A [Zf ext]
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Approximated reduced Lagrangian ingredients

1 configuration space Qr = Rm with Qr ≡ {Φqr | qr ∈ Qr}
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Riemannian-metric and dissipation-function approximations

gr (vr , wr ;µ) = vT
r

[
ΦTM (µ)Φ

]
wr

Fr (q̇r ;µ) = q̇r
T
[
ΦTC (µ)Φ

]
q̇r

approximated quadratic ingredients:

g̃r (vr , wr ;µ) = vT
r M̃r (µ)wr

F̃r (q̇r ;µ) = q̇r
T C̃r (µ)q̇r

relies on approximating low-dimensional matrices

M̃r (µ) ≈
[
ΦTM (µ)Φ

]
> 0

C̃r (µ) ≈
[
ΦTC (µ)Φ

]
≥ 0
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Mass-matrix approximation (similar for C )

Offline (expensive)
1 collect matrix snapshots {Mi} and corresponding {ΦTMiΦ}
2 determine ‘sample entries’

Online (cheap)
1 compute only sample entries of M (µ)
2 solve cheap optimization problem for αi :

↵1 ↵2� �

M(µ) M1 M2 F

minimize
↵1,↵2

subject to ↵1�
TM1� + ↵2�

TM2� > 0

3 set M̃r (µ) =
∑
i

αiΦ
TMiΦ
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Approximated reduced Lagrangian ingredients

1 configuration space Qr = Rm with Qr ≡ {Φqr | qr ∈ Qr}
2 Riemannian metric g̃r ≈ gr

3 potential-energy function Ṽr ≈ Vr

4 dissipation function F̃r ≈ Fr

5 external force f̃ ext
r ≈ f ext

r
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Potential-energy function approximation

Vr (qr ;µ) ≡ V (Φqr ;µ)

replace Φ with a sparse matrix Ψ (nZ � N nonzero rows)

Ṽr (qr ;µ) ≡V (Ψqr ;µ).

cost reduction

∇qr Vr (qr ;µ) = ΦT∇qV (Φqr ;µ) incurs O(Nm) flops

∇qr Ṽr (qr ;µ) = ΨT∇qV (Ψqr ;µ) incurs O(nZm) flops

compute Ψ by matching ΨT∇qV (Ψqr ;µ) and
ΦT∇qV (Φqr ;µ) for ‘training’ values of qr and µ
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Potential-energy function approximation

Offline (expensive)

1 collect snapshots of ∇qr Vr (qr ;µ) for ‘training’ values of qr , µ
2 determine nonzero rows of Ψ
3 solve optimization problem

minimize
Ψ

J∑
j=1

∥∥ΨT∇qV (Ψqr
j ;µj)− ΦT∇qV (Φqr

j ;µj)
∥∥2

2
.

Online (cheap): replace Vr with Ṽr
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Simple example: conservative clamped-free truss

1 + µ4

1 + µ5

0.5 + µ6

1

1

M (µ)q̈ +∇qV (q;µ) = 0

V : potential energy, high-order nonlinearity in q
density ρ = 1 + µ1

bar cross-sectional area A = 1 + µ2

modulus of elasticity E = 1 + µ3

µi ∈ [−1, 1], i = 1, ... , 6
120 dofs in ‘high-fidelity’ model
time integrator: implicit midpoint rule (symplectic)
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Reduced-order models

1 Galerkin projection
+ preserves structure
- expensive

2 Galerkin projection + collocation
- destroys structure

+ cheap

3 Galerkin projection + gappy POD approximation of residual
- destroys structure

+ cheap

4 proposed method
+ preserves structure
+ cheap

reduced-order-model parameters
Φ ∈ RN×m: POD, m = 18 chosen via 99% ‘energy criterion’
sample indices nZ = 30
Φf ∈ RN×mf : POD, mf = m = 10
train at 3 configurations, test at a new configuration
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Galerkin + collocation
structure-preserving
Galerkin + LS recon.
Galerkin
training-time
high-fidelity model
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Galerkin
Galerkin + Galerkin + proposed
collocation LS recon. method

error 6.85% 18.7% 690% 7.0%

speedup 0.41 1.77 2.06 1.82
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Conclusions

directly approximate reduced Lagrangian ingredients

+ Lagrangian-structure preservation
+ computational efficiency

only reduced-order model delivering accuracy and speedup!

future work

deploy on more realistic (larger, more highly nonlinear) problem
apply framework to preserve structure for other systems
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